Segmentation of Lesions in Dermoscopy Images Using Saliency Map And Contour Propagation
نویسندگان
چکیده
Melanoma is one of the most dangerous types of skin cancer and causes thousands of deaths worldwide each year. Recently dermoscopic imaging systems have been widely used as a diagnostic tool for melanoma detection. The first step in the automatic analysis of dermoscopy images is the lesion segmentation. In this article, a novel method for skin lesion segmentation that could be applied to a variety of images with different properties and deficiencies is proposed. After a multistep preprocessing phase (hair removal and illumination correction), a supervised saliency map construction method is used to obtain an initial guess of lesion location. The construction of the saliency map is based on a random forest regressor that takes a vector of regional image features and return a saliency score based on them. This regressor is trained in a multi-level manner based on 2000 training data provided in ISIC2017 melanoma recognition challenge. In addition to obtaining an initial contour of lesion, the output saliency map can be used as a speed function alongside with image gradient to derive the initial contour toward the lesion boundary using a propagation model. The proposed algorithm has been tested on the ISIC2017 training, validation and test datasets, and gained high values for evaluation metrics. Keywords-melanoma; segmentation; supervised saliency map; level sets; contour propagation; ISCI melanoma challenge.
منابع مشابه
A New Algorithm for Skin Lesion Border Detection in Dermoscopy Images
Background: With advances in medical imaging systems, digital dermoscopy has become one of the major imaging modalities in the analysis of skin lesions. Thus, automated segmentation or border detection has a great impact on the subsequent steps of skin cancer computer-aided diagnosis using demoscopy images. Since dermoscopy images suffer from artifacts such as shading and hair, there is a need ...
متن کاملAutomatic segmentation of dermoscopy images using saliency combined with Otsu threshold
Segmentation is one of the crucial steps for the computer-aided diagnosis (CAD) of skin cancer with dermoscopy images. To accurately extract lesion borders from dermoscopy images, a novel automatic segmentation algorithm using saliency combined with Otsu threshold is proposed in this paper, which includes enhancement and segmentation stages. In the enhancement stage, prior information on health...
متن کاملMelanoma detection with a deep learning model
Background: Skin cancer is one of the most common forms of cancer in the world and melanoma is the deadliest type of skin cancer. Both melanoma and melanocytic nevi begin in melanocytes (cells that produce melanin). However, melanocytic nevi are benign whereas melanoma is malignant. This work proposes a deep learning model for classification of these two lesions. Methods: In this analytic s...
متن کاملSalient regions detection in satellite images using the combination of MSER local features detector and saliency models
Nowadays, due to quality development of satellite images, automatic target detection on these images has been attracted many researchers' attention. Remote-sensing images follow various geospatial targets; these targets are generally man-made and have a distinctive structure from their surrounding areas. Different methods have been developed for automatic target detection. In most of these met...
متن کاملContour-Based Image Segmentation Using Selective Visual Attention
In many medical image segmentation applications identifying and extracting the region of interest (ROI) accurately is an important step. The usual approach to extract ROI is to apply image segmentation methods. In this paper, we focus on extracting ROI by segmentation based on visual attended locations. Chan-Vese active contour model is used for image segmentation and attended locations are det...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- CoRR
دوره abs/1703.00087 شماره
صفحات -
تاریخ انتشار 2017